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I. INTRODUCTION

The continual learning (CL) problem represents a major
challenge in deep learning [1]. Most commonly used are
weight regularization methods that guide weight updates to
avoid interference with previous tasks. These range from
weight constraints embedded in the loss function [2], [3] to
the extreme case of training distinct subnetworks. The latter
can be achieved by freezing parameters used for previous
tasks, choosing task-specific weights by neuronal pruning,
or by applying pre-defined masks to select a task specific
subnetwork [4], [5]. Although weight regularization techniques
greatly improve CL performance, they usually require task
boundaries, which is biologically implausible and limits the
range of possible learning scenarios.

Following R. French’s early idea about alleviating forgetting
by reducing representational overlap [6], we propose an ap-
proach to online CL that restricts learning to sparse neuronal
representations that are dynamically inferred for each data
point. To learn, our approach does not use backpropagation
(BP), but instead builds on a bio-inspired form of hierarchical
credit assignment known as Deep Feedback Control (DFC) [7].
In contrast to standard deep learning, the DFC network is
continuous in time and relies on a dynamic top-down feedback
controller. During learning, the controller drives neurons to
specific target activations until the network output matches its
target. The contributions of the controller to indiviudual neuron
activations determine their weight updates. To avoid forgetting,
we modulate the network learning dynamics to converge on
sparse target representations to which we restrict the feedfor-
ward weight updates. We utilize a simple sparsity mechanism
which ensures that only highly selective neurons remain active
as driven by the input or feedback. Having learned to represent
a data point with sparse activities that minimize the loss, we
‘engrave’ the structure of this representation into the network
by learning lateral inhibitory connections within each hidden
layer. This allows subsequent tasks to be represented in a
way that is consistent with the structure used to represent
previous tasks. In contrast to the feedforward weights, we
restrict recurrent weight updates to inactive neurons that are
excluded from the target representation (Fig. 1). In the next
section we provide further implementation details on how we
modified the DFC learning dynamics to integrate the two
major factors required for CL — sparsity and lateral (recurrent)
inhibition. We term this combination sparse-recurrent DFC.

Fig. 1. Schematic of DFC network
and top down feedback controller.
Learning is based on a dynamic pro-
cess during which all hidden neurons
integrate feedforward and feedback
signals until the network converges
to a sparse target representation min-
imizing the loss. Weight updates
(dashed lines) of W, are restricted
to active neurons comprising the tar-
get (red). Recurrent weights R; of
inactive neurons are updated via an
anti-hebbian learning rule, feedback
weights @Q; are fixed.
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II. TARGET REGULARIZATION WITH SPARSITY AND
LATERAL INHIBITION

A. Learning Dynamics

During training, the neuronal dynamics within the standard
DFC network [8] can be described by a differential equation
that takes into account the feedforward inputs v as well as
the feedback control signal vfb according to
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where the pre-non-linearity neuron activations in layer ¢ at
time ¢ are denoted by v;(¢), and the incoming weights by W;.
¢ refers to the activation function while the neuron output is
given by ; = ¢(v;(t)). The feedback signal u(t) is computed
as described in [8] by summing the integral and proportional
parts of the network output error. The feedback signal u(t) is
then fed back to each neuron of the network via the feedback
weights @);. During learning, the feedforward network and the
feedback controller constitute a recurrent dynamical system
that converges to a final target at which the neuron activations
V;ss Minimize the output error and stabilize the feedback
signal wu(t). For updating the feedforward weights at the
stable (converged) state (ss) each neuron’s target activation
is compared to its initial feedforward activation according to
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where 7;_; . is the pre-synaptic target activity with con-
troller feedback. 7; 4 is the target activity of the neuron
with feedback and (b(vffss) is the postsynaptic neuron activity
without feedback. Although feedback weights (); can be
learned [7], [8], we simplify the learning of the feedback



pathway and re-initialize (); as the Jacobian of the loss with
respect to the neuron activations for every data point.

B. Dynamic Sparsity

To gradually modulate the network learning dynamics to-
wards sparse targets, we add a winner-take-all (WTA) mech-
anism on top of the existing DFC network. At each time step
t we set a small fraction s;(t) of neurons to be zero. We then
increase s;(t) dynamically until the desired sparsity for the
stable state s; s, which is a hyperparameter fixed for each
layer. Although this mechanism is sufficient to reach the pre-
specified target sparsity, it does not yet guarantee that sparse
representations will be consistent across tasks. To ensure a
shared representational structure across tasks, we introduce a
second mechanism to ‘engrave’ structure of activity patterns
into the network.

C. Lateral Inhibition

We imprint information about mutual exclusivity between
populations of neurons into the network using lateral recur-
rent connections. Because we want the recurrent weights to
strongly influence which combinations of neurons are allowed
to comprise the target, as opposed to incrementally affecting
their activities, we introduce these as multiplicative weights
between 0 and 1, similar to ‘forget’ gates used in LSTMs [9].
We then calculate the neuron feedforward activity before the
nonlinearity according to
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where R; refers to the recurrent weight matrix in the i-th
layer. At convergence, we only learn the recurrent inhibitory
weights for all inactive neurons according to a simple anti-
Hebbian update rule

AR; = —n[p(0f Q)] Iriss|” 4)
where 77

i« are the target activities of the presynaptic neurons
in the same layer. Since we used a tanh activation function in
combination with multiplicative weights we use the absolute
activity values for updating the recurrent weights. For inactive
neurons we only update incoming recurrent weights. For
active neurons that comprise the target representation we only
update the incoming feedforward weights. Fig. 1 (dashed lines)
summarizes the weight updates. We next show that the specific
combination of feedback, recurrent dynamics and sparsity
represents a new, competitive CL approach across a wide range
of learning rates (LRs).

III. EXPERIMENTS

To test the CL capabilities of our approach, we next train
sparse-recurrent DFC on the split-MNIST dataset according
to the domain incremental learning paradigm as outlined by
Vandeven 2019 [10]. Previous works [2], [10] evaluate models
at fixed LRs for a fixed number of epochs. We consider this
as problematic because LR can be seen as a proxy for how
much a network learns, and there is an inherent trade-off
between learning the current task well and forgetting previous
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Fig. 2. LR-sweep evaluation of domain-IL split-MNIST performance of BP,
EWC, SI and DFC-sparse-rec. A: Accuracy of network at the end of training
on the whole test set for every LR. Error bars were produced by running every
model on every LR for 5 random seeds. Stars indicate peak performance of
each method. B: Peak-aligned final test set accuracy curves across LRs. The
curves shown here correspond to the sections found in A where the starting
point for each model was chosen as the peak performance. Thus this panel
shows the peak performance for each model as well as the following 5 values,
regardless of absolute LR. Stars indicate the average of the performance decay
according to 6 consecutive LR values.

tasks. Low LRs generally delay forgetting, while at the same
time slowing down learning the current task. Evaluating CL
algorithms at a single LR is not only problematic because it
doesn’t account for different optimal LRs, but it also fails to
capture how robust a model is to more learning, beyond its op-
timum LR. To overcome this issue, we compare our approach
against the most common CL methods across a wide range
of LRs (Fig. 2). These include classical CL methods such
as Synaptic Intelligence (SI), Elastic Weight Consolidation
(EWC), as well as standard BP as baseline. Fig. 2A shows
that sparse-recurrent DFC generally outperforms both BP and
EWC for most LRs. The asymmetric shape of the performance
curves can be explained by the fact that very small LRs (left of
the peak) generally prevent learning while high LRs (right of
peak) can lead to substantial catastrophic forgetting. Moreover,
the individual CL performance profiles confirm our initial
intuition that choosing a single LR to compare CL methods
might lead to overestimating one method over another. If
aligned to peak performance (Fig. 2B) sparse-recurrent DFC
outperforms BP and EWC for every LR. However, SI exhibits
a slightly higher peak performance while sparse-recurrent DFC
shows a slower decay and better performance at higher LRs. To
cover and compare these effects we evaluate CL performance
either by comparing peak performances or by taking the
performance average of a contiguous window of LRs once
peak performance has been reached (Fig. 2, stars). The latter
evaluation metric has the desired property of favoring higher
peak performance followed by slower decays while being
indifferent to the optimal LR. Overall, we conclude that target
regularization in our DFC framework represents a competitive
CL method across a large range of LRs. In the next section
we will investigate in more detail the effect of the controller
feedback signal to facilitate CL.



A. Integration feedback (error) signaling facilitates CL

A major difference between standard BP and DFC is that
in DFC, the activity of each neuron during training reflects
feedforward as well as feedback (error) signals coming from
the top-down controller. As a result, sparse target representa-
tions are specific to both input and output, with data points
exhibiting larger overlaps in target representations if these have
similar features or the same label. Fig. 3A shows that the CL
performance is improved across a wide range of LRs if we take
into account feedback signals when selecting the remaining
sparse target representation. We conclude that the feedback
signals help to choose the right neuron populations as sparse
targets. We next investigate the combination of sparsity and
recurrence to enable CL in the DFC framework.

B. Sparsity and lateral inhibition are required for CL

To investigate whether both sparsity and recurrent weights
are necessary for CL, we compare the accuracy of sparse-
recurrent DFC against standard DFC, sparse DFC and recur-
rent DFC. Fig. 3B shows that neither sparsity nor recurrent
connections alone significantly alter CL performance across
LRs. However, the combination of the two leads to better
performance across most LRs. Comparing peak accuracy
(Fig. 3B, stars denoted by ‘Peak’) and the average accuracy
over a contiguous post-peak window of six LR steps (Fig. 3B,
stars denoted by ‘Avg.’) confirms that both sparsity and
recurrence are required for performance gains at optimal LRs
as well as improvements in post-peak performance.

C. Reduction in overlap correlates with performance gains

Next, we investigate if the combination of sparsity and
lateral inhibition avoids catastrophic forgetting by reducing
representational overlap. We therefore compute the reduction
in overlap (i.e. separation) of active neurons in the last hidden
layer between representations of all pairs of digits at the
end of training. We distinguish between intra-label separation
(MNIST digits with the same label) and inter-label separation
(digits with a different labels). We compute representational
separation between digits as
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where rﬁ ; represents the activations in layer [ elicited by the
j’th sample of digit d. Fig. 3C shows the averages of inter-
and intra-label representational separations for DFC variants.
Interestingly, sparse DFC does not yield significantly higher
accuracies compared to standard DFC or BP, suggesting that
overall increases in representational separation do not account
for performance improvements that we observed in Fig. 3B.
To resolve this issue, we define a new measure, that we term
information distance, as the inter divided by the intra label
separation. Fig. 3D shows that this information distance over
a wide range of LRs. For the LRs where sparse-recurrent DFC
yields higher information distance, we also observe better CL
performance (compare to Fig. 3B), suggesting that the relative
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Fig. 3. A Effect of feedforward and feedback activity used in selecting the
sparsified population for different LRs. The x-axis represents the fraction
measuring the impact of feedback activity on the selection of neurons to be
sparsified. A value of 0 means only feedforward activity is considered, a value
of 1 means only feedback is taken into consideration, and 0.5 corresponds
to an equal mix of the two activites. B Cross-LR evaluation for all DFC
variants. The plot reflects the overall performance for all digits at the end of
training. C. Inter- and intra-label separations for DFC variants after all five
tasks have been learned. Intra-label separations are calculated for all digit pairs
with same label, inter-label separations for all pairs of digits with different
labels. D Information distance calculated as the inter-digit separation divided
by intra-digit separation at the end of training across a wide range of LRs.

degree of digit representational overlap can explain the CL
performance profile that we observe for sparse-recurrent DFC.

D. Recurrent weights constrain learning across tasks

In the case of domain-IL, the network has to learn a
representation of its input in the final hidden layer for each
task which is linearly separable by its readout weights. One
possible way to prevent forgetting is to ensure two things.
Requirement 1: The hyperplane separating representations of
different labels (implemented in the network by the readout
layer) needs to stay the same, or similar to the old one.
Requirement 2: Data points represented in the final hidden
layer need to stay on the same side of the classification hyper-
plane that was initially learned. We measured feedforward and
target activations (including effects of controller and recurrent
connections) of the final hidden layer of the network to test
whether recurrent weights help to achieve this.

Regarding requirement 1, Fig. 4B shows that, if we clas-
sify targets at the start of training of a new task according
to the previously learned separation boundary, DFC-sparse-
rec consistently yields higher classification accuracies than
DFC-sparse. This suggests that recurrent weights regularize
new targets such that they align with the previously learned
boundary. This idea is illustrated in Fig. 4A, where task 2
targets are separated by the same hyperplane that divides
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Fig. 4. Effects of recurrent weights on targets and feedforward activations during learning. A: Schematic of task 1 and 2 representations with respect to the
hyperplane (dashed line) dividing task 1 targets (grey) according to their label. This diagram illustrates two things: First, the new target representations align
with the previously learned hyperplane in terms of label separation (supported by B). In other words, the hyperplane that separates task 1 targets also separates
task 2 targets. Second, task 1 representations generally move less towards the separating hyperplane as subsequent tasks are learned (supported by C). This
is represented by the arrows. B: Fraction of initial target representations (v; ss) of new task that are correctly separated acccording to the previously learned
hyperplane. C: Movement of feedforward activations (vff__) towards hyperplane after learning subsequent tasks, normalized by movement in all directions.
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task 1 targets. Regarding requirement 2, we measured the
direction of movement of feedforward activations from when
they were first learned to the end of training. We quantify how
much datapoints move towards the initially learned separation
boundary. Fig. 4C shows movement towards the hyperplane
normalized by movement in other directions. We can see that
DFC-sparse-rec reduces this movement compared to DFC-
sparse, although error bars are large.

IV. DISCUSSION

Sparse-recurrent DFC yields CL performance improvements
beyond what sparsity and recurrent connections achieve indi-
vidually. The necessity of sparsity supports our hypothesis that
catastrophic forgetting is alleviated by establishing a separa-
tion of active neuron populations. However, the separation of
active neuron populations between representations of any two
digits alone does not explain the performance improvement,
since sparse DFC yields overall separation levels compara-
ble to sparse-recurrent DFC (Fig. 3C). Instead, the decisive
measure seems to be how separated neuron populations repre-
senting distinct outputs are. Overall, this suggests that sparse-
recurrent DFC improves domain-IL split-MNIST performance
by creating two (partially) separated neuron populations in
the last hidden layer, each of which is selective for a given
label (digit parity), but not for a specific task (which pair of
digits). The necessity of lateral inhibition can be explained by
its effect of aligning new targets to old separation boundaries,
thus reusing the structure established by previous tasks. This
structure that is imprinted onto recurrent weights in early tasks
and reused in later tasks consists of information about which
neurons can fire at the same time, and which are mutually
exclusive. Further, this structure constrains the movement
of previously learned data points towards the hyperplane,
thus preserving representations that are compatible with their
initially learned separation boundary. The exact mechanism by
which this happens still needs to be investigated.

One drawback of our approach compared to standard ma-
chine learning methods is that it is less computationally
efficient due to the need to approximate differential equations
of the network dynamics. However, we are optimistic that the
same principles that enabled sparse-recurrent DFC to improve
upon other strategies are translatable to more classical, GPU-
friendly implementations. Alternatively, a neuromorphic sys-
tem implementation that physically emulates neuron dynamics
could also solve this problem.

Our results show that DFC-sparse-rec not only performs
better than standard DFC and BP on split-MNIST CL tasks,
but also better than EWC and arguably on par with SIL
Moreover, since sparse-recurrent DFC relies on principles that
are distinct from the ones used in EWC and SI, it could
potentially be combined with additional loss terms to yield
even better CL performance. On a similar note, our method
does not require any specific action at the task boundary,
whereas EWC and SI update their loss term at the end of every
task. This renders our method both more biologically plausible
and potentially more versatile. Not requiring task boundaries
could be especially helpful in online learning scenarios where
changes in distributions of the input data are not known.

With this work we show that we can match and in some
cases even exceed the performance of existing CL approaches
by using principles of neural computation inspired by biology.
From a machine learning perspective this is relevant because
we are using a different set of guiding principles than ex-
isting approaches, which opens the possibility of combining
ideas from both domains for even better results. Although
the current implementation of sparse-recurrent DFC is less
efficient compared to standard learning algorithms when run
on GPUs, we believe that future work could translate our
approach into a much more efficient implementation. From a
neuroscientific perspective, our findings allow experimenters
to derive new hypotheses about how the brain might avoid
catastrophic forgetting.
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