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Abstract— Learning from Demonstration (LfD) approaches
empower end-users to teach robots novel tasks via demonstra-
tions of the desired behaviors. However, current LfD frame-
works are neither capable of fast adaptation to heterogeneous
human demonstrations nor large-scale deployment in ubiqui-
tous robotics applications. In this paper, we propose a novel
LfD framework, Fast Lifelong Adaptive Inverse Reinforcement
learning (FLAIR). Our approach (1) leverages learned strate-
gies to construct policy mixtures for fast adaptation to new
demonstrations; (2) distills common knowledge across demon-
strations, achieving accurate task inference; and (3) expands
its model when needed in lifelong deployments, maintaining
a concise set of prototypical strategies that can approximate
all behaviors via policy mixtures. We empirically validate
that FLAIR achieves adaptability (i.e., the robot adapts to
heterogeneous, user-specific task preferences), efficiency (i.e., the
robot achieves sample-efficient adaptation), and scalability (i.e.,
the model grows sublinearly with the number of demonstra-
tions while maintaining high performance). FLAIR surpasses
benchmarks across three continuous control tasks with an
average 57% improvement in policy returns and an average
78% fewer episodes required for demonstration modeling using
policy mixtures. Finally, we demonstrate the success of FLAIR
in a real-robot table tennis task.

I. INTRODUCTION

Robots are becoming increasingly ubiquitous with recent
advancements in Artificial Intelligence (Al), largely due to
the success of Deep Reinforcement Learning (DRL) tech-
niques in generating high-performance continuous control
behaviors [1]-[3]. However, DRL’s success heavily relies on
sophisticated reward functions designed for each task. These
hand-crafted reward functions typically require iterations
of fine-tuning and consultation with domain experts to be
effective [4]. Instead, Learning from Demonstration (LfD)
approaches democratize access to robotics by having users
demonstrate the desired behavior to the robot [5], removing
the need for per-task reward engineering. Nevertheless, we
must consider that end-users may adopt varying preferences
and strategies in how they complete the same task [6]. An
LfD framework that assumes homogeneity across the set of
provided demonstrations could cause the robot to fail to infer
the accurate intention, resulting in unwanted or even unsafe
behavior [7], [8]. Embracing individual preferences can help
robots achieve better performance and long-term acceptance
from humans [9]. Personalization can also prove inefficient
if each individual policy must be inferred separately. To
avoid this, prior work, MSRD [10], decomposed shared and
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Fig. 1. This figure shows an illustration of the lifelong learning process with
our proposed method, FLAIR. As each demonstrator performs their strike,
FLAIR determines whether the demonstration is novel. If a demonstration
can be explained by a policy mixture of previously learned strategies, FLAIR
accepts the policy mixture without training a new strategy. If the policy
mixture is not close to the demonstration, FLAIR creates a new strategy
and a prototype policy for the demonstration.

individual-specific reward information across heterogeneous
demonstrations (i.e., demonstrations seeking to accomplish
the same task with different styles). While MSRD makes
significant improvements on the accuracy and efficiency in
personalized policy modeling, the framework must be trained
all-at-once and is unable to handle incremental/lifelong
learning, a more realistic paradigm for real-world LfD ap-
plications.

Consider a real-world example of a series of humans
teaching a robot how to play table tennis, a compelling robot
learning platform utilized in prior work [11]-[13]. Users of
the robot may have their own preferences for table tennis
strike as shown in Figure I. To solve such lifelong robot LfD
tasks, we introduce FLAIR: Fast Lifelong Adaptive Inverse
Reinforcement learning. Instead of repeating a strategy that
has been seen, when a third user demonstrates a behavior
that could be explained by a mixture (i.e., a composition of
known behaviors) of previously seen prototypical behaviors,
FLAIR will design a policy mixture to adeptly model that be-
havior. We show FLAIR accomplishes adaptivity, efficiency,
and scalability in LfD tasks in simulated and real robot
experiments:

1) Adaptive Learning: We display FLAIR’s adaptivity by
showing it models demonstrations better than benchmarks
and achieves an average of 57% higher task returns.

2) Efficient Adaptation: We demonstrate better sample
efficiency of FLAIR by showing its mixture optimiza-
tion needs an average of 78% fewer samples to model
demonstrations compared with training a new policy.

3) Lifelong Scalability: We showcase the scalability of



FLAIR in an experiment obtaining 100 demonstrations
sequentially where FLAIR utilizes policy mixtures to
achieve a precise representation of each demonstration.
4) Real-Robot Deployment: We demonstrate FLAIR’s abil-
ity to construct successful policy mixtures achieving
personalization in a table tennis robot experiment.

II. RELATED WORK

Two common approaches in LfD are to either directly
learn a policy, i.e., Imitation Learning (IL), or infer a
reward to train a policy, i.e., Inverse Reinforcement Learning
(IRL) [14]. IL learns a direct mapping from states to the
actions demonstrated [15], [16]. Although a straightforward
approach, IL suffers from correspondence matching issues
and is not robust to changes in environment dynamics due
to its mimicry of the demonstrated behaviors [17], [18]. IRL,
on the other hand, infers the demonstrator’s latent intent in a
more robust and transferable form of a reward function [19].

Although traditional IRL approaches often overlook het-
erogeneity within demonstrations, there has been recent work
that models heterogeneous demonstrations [20]-[25]. One
intuitive way is to classify demonstrations into homoge-
neous clusters before applying IRL [6]. The Expectation
Maximization (EM) algorithm also operates on a similar
idea and iterates between E-step and M-step, where E-step
clusters demonstrations and M-step solves the IRL problem
on each cluster [26], [27]. When the number of strategies
is unknown, a Dirichlet Process prior [28]-[30] or non-
parametric methods [31] could be used. In these approaches,
each reward function only learns from a portion of the
demonstrations, making them prone to the issue of reward
ambiguity [10]. Furthermore, these methods assume access to
all demonstrations beforehand, which is not realistic for LfD
algorithm deployment. We instead consider the more realistic
setting of lifelong learning [32], where an agent adapts to
new demostrations through its lifetime and continually builds
its knowledge base.

1. METHOD

In this section, we introduce the problem setup and nota-
tions, then provide an overview of FLAIR, and its key com-
ponents: policy mixture and between-class discrimination.

A. Problem Setup

In our problem setup, we consider a lifelong learning from
heterogeneous demonstration process where demonstrations
arrive in sequence, as illustrated in Figure I. We denote the
i-th arrived demonstration as 7;. Unlike prior work, FLAIR
does not assume access to the ground-truth strategy label,
¢r,- FLAIR learns a shared task reward Ry, , strategy re-
wards Ry ;, and policies corresponding to each strategy 74,
similar to MSRD [33]. We define the number of prototype
strategies created by FLAIR till demonstration 7; as M;,
and nr(7) = >, 7' "' Ro(s:) as trajectory 7’s discounted
cumulative reward with the inferred reward function Ry.

Algorithm 1: FLAIR
Input : Demonstration modeling quality threshold e
1 My = 0, MixtureWeights=[], m=[]
2 while lifelong learning from heterogeneous
demonstration do

3 Obtain demonstration 7;
4 | W, DEX «MixtureOptimization (7, {mg, }17))
5 if D¥;* < e then
6 MixtureWeights[i]«— w;, M; 1 < M;
7 else
8 Thew R9S-(Mi+1> <AIRL(T7;)
9 Dln(el\‘v — E-,—Nﬂ—newDKL(Ti7 7’)
10 if D < D7ev then
11 ‘ MixtureWeights[i]<— w;, M;11 < M;
12 else
13 Mi+1 — Mz +1
14 MM, < )
15 MixtureWeights[i]« [0,0,---,0,1]
———
M; zeros

16 Update Rg,,,, Ry ;, Ty, by Between-Class
Discrimination and MSRD

B. Fast Lifelong Adaptive Inverse Reinforcement Learning
(FLAIR)

With FLAIR, we seek to accomplish two key goals: a)
design policies that solve the task while personalizing to
demonstrations (i.e., the standard objective in personalized
LfD), and b) incorporate knowledge from demonstrated be-
haviors to facilitate precise, efficient, and scalable adaptation
to future demonstrations (i.e., the characteristics required
for a lifelong LfD framework). We present our method in
pseudocode in Algorithm 1.

When a new demonstration 7; becomes available, FLAIR
decides whether to explain 7; with previously learned policies
(a highly efficient approach), or create a new strategy from
scratch (a fallback technique). In the first case, FLAIR
attempts to explain 7; by constructing policy mixtures with
previously learned strategies according to the demonstration
recovery objective (line 4). If the trajectory generated by
the mixture is close to the demonstration (evidenced by the
KL-divergence between the policy mixture trajectory and the
demonstration state distributions falling under a threshold,
€), FLAIR can bypass the computationally expensive new-
strategy training (line 8).

Otherwise, if the mixture does not meet the quality
threshold, ¢, FLAIR trains a new strategy by AIRL [18]
and compares the quality of the new policy to the policy
mixture (Lines 8-10). If the mixture performs better, we
accept the mixture weights to represent 7; (line 11). If the
new strategy performs better, we accept the new strategy as
an additional prototype and update our reward and policy
model (accordingly, in Line 13, we increment the number of
strategies by one). Further, we call the demonstration, 7;, the
“pure” demonstration for strategy M;,q, meaning strategy



TABLE I
THIS TABLE SHOWS LEARNED POLICY METRICS BETWEEN AIRL, MSRD, AND FLAIR. THE HIGHER ENVIRONMENT RETURNS / LOWER ESTIMATED
KL DIVERGENCE, THE BETTER.

Domains Inverted Pendulum

Lunar Lander Bipedal Walker

Methods AIRL MSRD FLAIR AIRL

MSRD FLAIR AIRL MSRD FLAIR

Environment Returns
Estimated KL Divergence 4.08
Strategy Rewards —5.73
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Fig. 2. This figure shows the correlation between the estimated task reward
with the ground truth task reward for Inverted Pendulum. Each dot is a
trajectory. FLAIR achieves a higher task reward correlation.

M, purely represents demonstration 7; (line 14). As such,
the mixture weight for 7; is a one-hot vector on strategy
Mi+1 (line 15)

C. Policy Mixture Optimization

To achieve efficient personalization for a new demonstra-
tion 7; (Line 4 of Algorithm 1), we construct a policy mixture
with a linear geometric combination of existing policies
Ty, T2, - , 7y, (Equation 1), where w; ; > 0 are learned

weights such that: Z;\il w; ;= 1.

M;
T, (s) = > _wija;,  a; ~w(s) (1

j=1
As the ultimate goal of demonstration modeling is to recover
the demonstrated behavior, we optimize the linear weights,
w;, to minimize divergence between the trajectory induced
by the mixture policy and the demonstration, illustrated in
Equation 2.

minimize E; ., [Div(7;, 7)]

Ws

2

Specifically, we choose Kullback-Leibler divergence (KL-
divergence) [34] on the state marginal distributions of trajec-
tories in our implementation. We estimate the state distribu-
tion within a trajectory by the kernel density estimator [35].
Since the trajectory generation process is non-differentiable,
we seek a non-gradient-based optimizer to solve the op-
timization problem. Specifically, FLAIR utilizes a naive,
random optimization method; it generates random weight

vectors w;, evaluates Equation 2, and chooses the weight
that achieves the minimization.

D. Between-Class Discrimination

In order to increase the strategy reward’s discriminability
between different strategies, we propose a novel learning
objective named Between-Class Discrimination (BCD). BCD
enforces the strategy reward to correctly discriminate mixture
demonstrations from the pure demonstration: If demonstra-
tion 7; has weight w; ; on strategy j (as identified in Policy
Mixture Optimization), we could view the probability that
7; happens under the strategy reward, Fs.;, should be w; ;
proportion of the probability of the pure demonstration, 7, .
This property can be exploited to enforce a structure on the
reward given to the pure-demonstration, 7,,,, and mixture-

demonstration 7;, as per Lemma 1.
Lemma 1: Under the maximum entropy principal,

P(Ti; S-j) e"Es (73)
P(Tm]‘ ) S']) enRS-j (ij )

Thus, we enforce the relationship of strategy rewards,
S-j, evaluated on pure strategy demonstration, T, » and
mixture strategy demonstration, 7; with mixture weight wj ;,
as shown in Equation 3.

Wij =

n
. ) 2
LBCD(Q&J) _ 2 : (6”9&_7‘ (rs) _ wid_enas,j (ij)) 3)

i=1

An extreme case of BCD loss is when 7; is the pure
demonstration for another strategy, k (i.e., my = 7). In this
case, w; ; = 0 (as 7; is purely on strategy k), and Equation 3
degenerates to encourage the strategy j’s reward to give as
low as possible reward to 7;. In turn, strategy rewards gain
better discrimination between different strategies, facilitating
more robust strategy reward learning, and contributing to the
success in lifelong learning.

IV. RESULTS

In this section, we show that FLAIR achieves adaptability,
efficiency, and scalability in modeling heterogeneous demon-
strations. We test FLAIR on three simulated continuous con-
trol environments in OpenAl Gym [36]: Inverted Pendulum
(IP) [37], Lunar Lander (LL), and Bipedal Walker (BW) [38].
We generate a collection of heterogeneous demonstrations by
jointly optimizing an environment and diversity reward with
DIAYN [39]. For all experiments excluding the scalability
study, we use ten demonstrations. We compare FLAIR with
AIRL and MSRD by running three trials of each method.



TABLE I
THIS TABLE DEPICTS POLICY METRICS BETWEEN FLAIR’S BEST MIXTURES, FLAIR’S WORST MIXTURES, AND LEARNING-FROM-SCRATCH WITH

AIRL. THE SCORES ARE SHOWN AS AVERAGES + STANDARD DEVIATIONS ACROSS PARTICIPANTS. BOLD DENOTES THE HIGHEST SCORES.

Metrics FLAIR’s Best Mixture ~ FLAIR’s Worst Mixture  Learning-from-Scratch
Task Score 69.9 +10.3 63.1+13.4 60.5 £ 10.9
Strategy Score 101.3 +14.8 73.1+25.3 93.7+17.1

A. Adaptability

Q1: Can FLAIR’s policy mixtures perform well at the
task? From ten demonstrations, FLAIR created 6.3 & 0.5
strategies (average and standard deviation across three trials)
in IP, 5.3 +£ 1.2 in LL, and 3.3 £ 0.5 in BW. FLAIR’s
learned policies including the policy mixtures are signficantly
more successful at the task (row “Environment Returns” in
Table I), outperforming benchmarks in task performance with
77% higher returns in IP, 14% in LL, and 80% in BW than
best baselines.

Q2: How closely does the policy recover the strategic
preference? We show that FLAIR is statistically significantly
better in estimated KL divergence than AIRL (average 4%
better) and MSRD (average 18% better), shown in row
“Estimated KL Divergence” in Table I, where KL divergence
is evaluated between policy rollouts and demonstration state
distributions. We further tested the learned policies’ perfor-
mance on ground-truth strategy reward functions given by
DIAYN. The results on row “Strategy Rewards” illustrate
FLAIR’s better adherence to the demonstrated strategies.
Q3. How well does the task reward model the ground truth
environment reward? We evaluate the learned task reward
functions by calculating the correlation between estimated
task rewards with ground-truth environment rewards. We
construct a test dataset of 10,000 trajectories with multiple
policies obtained during the “DIAYN+env reward” training.
FLAIR’s task reward achieves » = 0.953 in IP (shown in
Figure 2), » = 0.614 in LP, and r = 0.582 in BW, with
an average 18% (statistically significantly) higher correlation
than best baselines.

B. Efficiency & Scalability

Q4. Can FLAIR’s mixture optimization model demon-
strations more efficiently than learning a new, separate
policy? We study the number of episodes needed by FLAIR’s
mixture optimization and AIRL/MSRD policy training to
achieve the same modeling performance of demonstrations.
FLAIR requires 77% fewer episodes to achieve a high log
likelihood of the demonstration relative to AIRL and 79%
fewer episodes than MSRD.

Q5. Can FLAIR’s success continue in a larger-scale
LfD problem? We generate 95 mixtures with randomized
weights from 5 prototypical policies for a total of 100 unique
demonstrations to test how well FLAIR scales. We train
FLAIR sequentially on the 100 demonstrations and observe
FLAIR learns a concise set of 17 strategies in IP, 10 in
LL, and 6 in BW that capture the scope of behaviors while
also achieving a consistently strong return for each task
(Figure 3). We find FLAIR on average is able to maintain or
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Fig. 3. This figure plots the returns of FLAIR policies in the scalability

experiment for 100 demonstrations in IP, with AIRL, MSRD, and FLAIR
10-demonstration experiment performance as reference.

even exceed its 10-demonstration performance when scaling
up to 100 demonstrations.

C. Real-World Robot Case Study: Table Tennis

We perform a real-world robot table tennis experiment
where we utilize FLAIR’s policy mixtures to model user
demonstrations. We first collect demonstrations of four dif-
ferent strategies, push, slice, topspin, and lob, from human
subjects via kinesthetic teaching. After training the four
prototypical strategy policies, we assess how FLAIR’s policy
mixtures can succeed in new user demonstration modeling.

We quantitatively evaluate the fitness of the policy mix-
tures with respect to user preferences by a questionnaire,
where we calculate task and strategy scores produced via a
Likert scale. The strategy and task scores results are sum-
marized in Table II. Statistical tests shows the FLAIR best
mixture has significantly higher task reward than learning-
from-scratch, and both FLAIR best mixture and learning-
from-scratch have significantly higher strategy reward than
the FLAIR worst mixture. Such result indicates the success
of FLAIR’s mixture optimization in identifying a policy
mixture that accomplishes the task and fulfills the user’s
preference in the table tennis real-robot setup.

V. CONCLUSION

In this paper, we present FLAIR, a fast lifelong adaptive
LfD framework. We demonstrate FLAIR’s adaptability to
novel personal preferences and efficiency by utilizing policy
mixtures. We also illustrate FLAIR’s scalability in how it
learns a concise set of strategies to solve the problem of
modeling a large number of demonstrations.
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